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In an attempt to find parameters of a time series which are absolutely robust 
with respect to nonlinear distortion, we introduce a function called the entropy 
profile which measures in some sense the distance between the given process and 
white noise. This concept combines a clear definition and a simple algorithm, 
which apply to arbitrary stationary time series, with an informative graphical 
representation similar to the Fourier spectrum. For sequences derived from one- 
dimensional maps, the entropy profile indicates periodic and almost periodic 
behavior and the presence of Markov partitions. 

KEY WORDS:  Symbolic dynamics; entropy; time series analysis; unimodal 
map. 

1. INTRODUCTION 

We define new entropy functions describing statistical dependences in a 
time series. Any number s defines a partition of the line into two sets: the 
numbers smaller than s and those larger than s. Thus the given data are 
transformed into a 0-1 sequence. The entropy profile of order n indicates 
the dependence of Shannon entropy, of words of length n of the symbol 
sequence, on the number s. The dependence of such entropies on the parti- 
tion has been studied by several authors. ~8' 15) Our new idea is a useful 
(quite simple and natural) standardization of thresholds s by so-called 
q-quantiles. The method has been applied successfully to a class of speech 
signals (ref. 2, cf. Fig. 1), and seems applicable to many experimenta! time 
series, in particular to those which combine nonlinear structure with 
random influences. 
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968 Bandt and Pompe 

In this paper, we try to give a theoretical foundation for our method. 
We derive some general properties, and we take the well-known scenario 
of unimodal maps (4' 7, 19, 14) as a test example. Several entropy profiles of 
quadratic maps are obtained analytically, and new questions concerning 
one-dimensional dynamics are raised. 

As a motivation, compare two main groups of methods in time series 
analysis. Classical methods, such as correlation functions, spectra, and 
ARMA models, work well for noisy data, but may turn out to be inade- 
quate in the presence of nonlinear effects. On the other hand, there are 
parameters from nonlinear dynamical systems, such as fractal dimensions, 
Lyapunov exponents, metric entropies, and multifractal spectra. (1' 5-8, 10. 11, 15) 
They are more suitable to detect nonlinear structures and to characterize 
chaos. However, these parameters are limits which exist, by deep theorems, 
in the idealized context of deterministic dynamics only. In practice, where 
nonlinear structure is usually mixed with, or rather covered by, noise, such 
methods involve tremendous conceptual and numerical problems. 

We have tried to find a method which works equally well for random 
and chaotic data. Entropy profiles combine a simple definition with a 
straightforward method of calculation. Being functions, they provide more 
information, and more intuitive information than single numbers. (While 
this has been stressed as a reason for the use of multifractal spectra instead 
of single dimensions, the multitude of shapes of entropy profiles is still 
more impressive.) 

Our profiles are only loosely connected with the metric theory of 
maps, and we do not think they have similar theoretical importance. They 
rather have practical advantages: they apply to all kinds of time series. (2) 
The only assumptions we shall make is that the given process is stationary 
and that its one-dimensional distribution is continuous. The second 
assumption can be relaxed, as shown at the end of the next section, but the 
method is not applicable if only a few different values are attained. 

2. DEFINITION OF ENTROPY PROFILE 

Symbolic Dynamics. Shannon Entropy. Let {xk}, k---1,..., N, 
be the given time series. Using a partition of the range of x values, {Xk} 
is transformed into a discrete sequence of symbols. To retain much infor- 
mation, it is common to use many symbols and partition sets. We take the 
simplest partitions with only two pieces. Given a threshold s, the time 
series {Xk} is turned into a 0-1 sequence {ik}, with ik=O for xk<s and 
i~= 1 otherwise. For unimodal maps (see Section 4), {ik} is called an 
itinerary when the critical point is chosen as s. The method of itineraries 
and kneading sequences is well established and was revived in recent work 
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of theoretical relevance.(9' 14) The idea here is to vary the threshold s in an 
appropriate way and to consider different symbol sequences at the same 
time. 

Every symbol sequence is evaluated statistically by entropy. For  each 
n = 1, 2,... we determine the frequencies p(w) of words w = wl ,-. w~ in the 
0-1 sequence, and the Shannon entropy as sum over all words of length n, 

H, = - ~ p (wl . . ,  w,) ld p(wl . . ,  w,) (1) 

Q u a n t i l e s .  Our key point is to standardize thresholds appropriately 
so that quite different time series can be compared. For  0 < q < 1, the 
q-quantile s=s(q) of the one-dimensional distribution of {xk} is charac- 
terized by the property that at most q of the values xk are smaller than s, 
and at most 1 - q  larger. (18) In other words, the symbol sequence for s(q) 
fulfils p ( 0 ) = q ,  p ( 1 ) =  1 -  q. In our numerical studies, where time series 
had several thousand values, we estimated s from q = # {xk < s}/N. (When 
certain intervals Is1, s2] do not contain any values xk, the definition of 
quantile becomes ambiguous for some q. This does not matter, since in 
such cases all thresholds between sl and s2 generate the same symbol 
sequence.) 

Definition. We determine entropies with s.=s(q) for each q and 
obtain H n as a function of q. The entropy profile of order n/> 2 of the time 
series is defined as 

rn(q) = 1 - Hn(q) -- H ,_  l(q) (2) 
Hi(q) 

We shall also consider the average profile of order ~< n, 

nHl(q) -H~(q)  1 H~(q) -Hl (q )  1 ~--2rk(q) 
R~(q)= (n--1)H~(q) = - (n -1 )H~(q)  =n---'-~ = (3) 

R e m a r k s .  Both r~ and R,  measure the distance of the time series 
from a sequence of statistically independent symbols, r n uses the condi- 
tional entropy H ~ -  Hn_ ~ of a letter provided its n -  1 predecessors are 
known, and R, is based on the conditional entropy H ~ - H i  of a word 
w1 --. w, when its first letter is known. 

Entropy profiles for n = 2,..., 10 of a "chaotic" experimental time series 
are shown in Fig. 1. The vowel "a" spoken by a male speaker in a modal 
register was sampled at a frequency of 8 kHz. The picture is typical for a 
large class of speech signals. The r,, and R~ do not differ much, except 
perhaps for n ~< 5, and they have some characteristic peaks in common. In 
this situation, we recommend R5 as a rather stable overall parameter. 
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Fig. 1. An experimental time series with its entropy profiles. 

It is clear that Rn as an average quantity behaves more regularly 
than r,.  On the other hand, r ,  is quite sensitive with respect to periodic 
patterns with periods smaller than n. In the framework of one-dimensional 
dynamics, r~ is the appropriate function showing some remarkable features 
(Section 4). In view of the special nature of the partitions, it is not clear 
whether entropy profiles will be equally successful in the study of higher- 
dimensional attractors. 

The Case of Discrete Distribution. Let  us assume now tha t  

the one-dimensional distribution of the xk is not continuous, so that 
some value x is attained with positive probability p=P{Xk=X}. Let 
p'=P{Xk<X}. Then for p'<q<p'+p, the quantile s(q) equals x. 
Intuitively, s(q) cuts the mass p at point x, leaving q - p '  on the left and 
p' + p - q  on the right. 

This idea applies to the sampling of word frequencies p(w). If s(q) = x, 
define the symbol sequence ik = 0 for Xk < X, ik = 1 for x~ > x, and ik = * for 
xk = x. Determine p(w) for words from 0, 1, and ,. Afterwards eliminate the 
words with , ,  one by one, as follows. If w contains one , ,  let w ~ w ~ be 
the words obtained when �9 is replaced by 0 and 1, respectively. Add 
p(w)(q-p')/p to p(w ~ and p(w)(p' +p-q)/p to p(wl), and cancel w. If w 
contains two symbols , ,  let w ~176 w ~ w 1~ and w H denote the words 
obtained by replacing these symbols by 0 or 1. Add p(w)(q-p')2/p 2 to 
p(w~176 add p(w)(q-p')(p' + p-q)/p2 to p(w ~ and p(wl~ and so on. 
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In other words, the point x is replaced by an interval I of length p, and 
each occurrence x k = x  in our time series by a uniformly distributed 
random number f rom/ .  The definition of entropy profiles now applies to 
the modified word frequencies. This works perfectly well if w only occa- 
sionally contains more than one ,.  In the exceptional case of a periodic 
sequence with small period m, however, the method inserts randomness 
into a deterministic pattern. One could argue that r , ( q ) -  1 for n > rn is 
more reasonable (cf. below). For that reason, we shalI avoid entropy 
profiles of periodic sequences with order larger than the period. 

3. P R O P E R T I E S  

Preliminaries. We list some well-known facts concerning arbitrary 
stationary symbol sequences {ix}. (Everything could be done for more than 
two symbols and more than one quantile, but we found it difficult to 
visualize and interpret functions r. of more than one variable.) Let us start 
with 

nil ,  >>. H.  >1 H . _ I  >~ HI (4) 

Here nH1 = H.  if and only if any n consecutive values ik are statistically 
independent, and H . = H . _ I  if the symbol sequence is deterministic: 
ik+.=f(ik+~,... ,  ik+.-1)  for each k. Now, 

H~ >j H . - H . _ ~  >~ H.+~ --1-1. (5) 

says that the uncertainty of a letter in the sequence becomes smaller if 
we know more of its predecessors. Here equality holds if and only if the 
conditional probabilities 

p(wo""  w.)  
p(w.I  Wo ..... w . _ l ) =  

p(wo".w._~) 

and 

coincide. 

Proof. 

and 

p(w.]wl,... ,  w~_l )=  p(Wl "''Wn) 
p (Wl" ' 'W ._ I )  

Rearrange (1) to get 

H . - H . _ I  = - Z p ( w l  . . .w.)ld p(w. lw, ..... w._l) 

1-1.+ 1 -- H .  = - ~ p(wo " " w.) Id p(w.  J Wo,-.., w.-1) 
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Their difference is 

with 

n .  - H n _  1 -(Hn+ 1 -Hn)=~p(wo...w.)ld p ( w " l w ~  Wn--1) 
p(wnlwl,..., w,_1) 

= ~  p(wo...w,)ldP(W~: "'w") 
P(Wo" "Wn) 

fi(Wo"" w.) =p(Wo �9 .. w._ 1) p(w. [w 1 ..... w._ 1) 

This can be interpreted as information gain (18~ or Kullback-Leibler 
entropy, (m which is nonnegative, and equals zero if and only if the 
distributions/~ and p coincide. 

Thus (5) is true. Equality holds in particular when {ik} is an 
( n -  1)th-order Markov chain. This means that the probability for a sym- 
bol wn to occur is determined by its n - 1  predecessors wl,..., w,_~, or 
p(w, I w~,..., w,_ 1) =p(w,  I Wk,..., % -  1) for all k ~< 0 and all wk,..., w,. By the 
above proof, this is equivalent to H,, + 1 - H m  = H , -  H , _  1 for all m >/n. 

Since H , - H , _ I  is a decreasing bounded sequence, the limit 
h = lim, ~ ~ H ,  - Hn_ ~ exists. It is called the entropy of the source of the 
symbol sequence. Clearly, h ~< H~, with equality for independent symbols. 

These facts will now be applied to our entropy profiles. 

Bounds for Profiles. Randomness and Determinism. From 
(4) and (5) we have 

0~<r.(q)~<l and 0~<R.(q)<~l for 0 < q < l ,  n>~2 (6) 

We add some comments on equality which show that the line r = 0 
represents "randomness" and the line r = 1 "determinism." R,(q)= r,(q)= 0 
holds for n = 2,..., m if any m successive values of the symbol sequence are 
independent. This holds independently of q if the xk are independent (white 
noise). On the other hand, rn(q)= 1 means that each symbol is determined 
by its n - 1  predecessors: ik+,=f(ik+l,..., ik+,_ 1)" This will happen when 
the sequence xk with period n alternates between values >s(q)  and <s(q)  
(e.g., n-band attractor for a chaotic map). 

R~(q) = 1 for some n implies r2(q) = 1 by (3) and (6). Hence H2 = H1 
and ik§ =f(ik). Since q ~ 0 ,  1, it is not possible that f ( 0 ) = 0  or f ( 1 ) =  1. 
This means that {ik} = 010101... or 101010 .... Thus q =  1/2, and x~ alter- 
nates between values less than s(q) and values larger than s(q) ("two-band 
attractor").  
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Increase w i t h  n.  Markov Partitions.  From (5) and (3) it is 
immediate that 

r~(q)<~r~§ and R~(q)<~R~+l(q) for all q and n (7) 

As proved above, rm(q)=rm+~(q) for some m holds exactly if 
p(Wm[Wl,..., Wm-1)=p(Wm]Wo,..., Win-l) for all w i. Equality is true for all 
n I> m if and only if the symbol sequence forms a Markov chain of order 
m - 1 .  This happens only for special values of q: it implies that the 
threshold s(q) defines a Markov partition for the process which generates 
our time series (see below). A simple calculation shows that Rm(q)= R,~_~ l(q) 
implies r2(q) = r3(q) . . . . .  rm+ l ( q ) "  

C o n t i n u i t y  a n d  Limit .  If the one-dimensional distribution of the 
xk is continuous, p(w) is a continuous function of q for each word 
w = w l . . . w , .  (If {ik} corresponds to q and {i'k} to ~, then the probability 
that ik r i'k is [ q -  ~I and the probability for i~+ 1 "'" ik+, r ?k+ i" '" rk+~ is 
not larger than n.  [q-~[ . )  As a consequence, H,(q), r,(q), and R,(q) are 
continuous functions, which can also be proved for our definition in the 
discrete case. 

Next, let us mention that 

ro~(q) := lim r,(q)= lira R,(q)= 1 - - -  
n ~ o o  n ~ o o  

h(q) 
(8) 

Hi(q) 

which measures the redundancy per symbol of the sequence {ik). Only in 
the Markov case [which includes the deterministic case r,(q)= 1 ] will this 
limit be reached for finite n. 

Invariance under Distortion. An entropy profile does not 
change when the time series undergoes a distortion Yk = @(Xk), where ~ is 
an arbitrary (in general nonlinear) strictly increasing function. Namely, for 
any q, the threshold goes with the transformation: sy(q)= @(sx(q)). (Note 
that ~, may even be constant on intervals which do not contain any x, .  For 
a decreasing transformation @, the quantiles q and 1 - q  will interchange, 
and the profile will be reflected at the line q =  1/2.) In this sense, entropy 
profiles are independent of the one-dimensional distribution of the time 
series. Actually, our construction of profiles can be interpreted as a 
distortion which transforms {x,} into a time series which is uniformly 
distributed in [0, 1]. 

E x a m p l e .  Let g be an arbitrary strictly increasing function on 
[0, 1 ], e a small, positive, irrational number, and xk = g ( k e -  [ke]), where 
Ix]  denotes the largest integer contained in x. The map ~, = g - 1  trans- 

822/70/3-4-30 
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forms xk into the sawtooth sequence Yk = ke - [ke] for which s(q) = q. We 
shall prove that the graph of r,(q) forms a bell with a broad middle part 
near to 1 and with steep descent to 0 for q --* 0 and q --+ 1. For  sine func- 
tions, we get a similar result. More generally, this effect can be observed 
whenever we sample values xk from a sufficiently smooth function, as in 
Fig. 1, with a very small sampling period. 

Let q > ne and 1 - q  > ne. Then the possible 0--1 words are 0kl " -k  and 
lk0 . - k  with 0 ~< k ~< n. For  instance, Y k ' ' ' Y k + , -  1 = 01"- 1 if and only if Yk 
lies in ]q -- e, q]. Hence, taking Lebesgue measure as distribution of the Yk, 
we obtain p ( O " ) = q - ( n - 1 ) e ,  p ( l " ) = l - q - ( n - l ) e ,  and p ( w ) = e  
for the other 2 n - 2  words of length n. We write ~ = q - ( n - 1 ) e ,  
fl = 1 - q - (n - 1 )e, and q~(p) = - p  ld p, so that 

H ,  - H n - t = r ( o~ ) - r ( o~ q- 8)  q- q~ ( f l  ) - -  q~ ( f l  q- 8)  + 2~0(e) 

which goes to zero with 5, by continuity of ~0 at q and 1 - q. Thus r,(q)  ~ 1 
if e is small enough, and q, 1 - q are much larger than e. In a similar way 
one shows that for fixed e and q --* 0 or q --* 1 we still have r,(q)  --* O. 

4. ONE-DIMENSIONAL DYNAMICS- -ANALYTICAL RESULTS 

Topological Invariance. For sequences of the form Xk+l=f(xk), 
where f is a continuous mapping of an interval I, entropy profiles show 
remarkable features. If two mappings f ,  .~: 1 ~  I are topologically conjugate 
(that is, f o  ~k = ~oj7 for some homeomorphism r 1 ~ I ) ,  then the corre- 
sponding profiles either coincide or ~ , ( q ) = r , ( 1 - q ) .  The latter case 
corresponds to decreasing ~b. Thus our profiles describe general, topological 
features of the dynamics. We cannot expect information on properties 
which depend on differentiability conditions on f .  

Thus, when we consider unimodal maps, ~4"19) any suitable one- 
parameter family will yield the same entropy profiles. In other words, the 
r,(q) indicate at which position in the bifurcation diagram ("Feigenbaum 
scenario,,t4,7, 14)) we are. Our numerical studies will be made with the 
quadratic family (or logistic map) f ( x ) = ax( 1 - x ), 0 < a <~ 4, while piece- 
wise linear maps, in particular those with an invariant ergodic measure, are 
more appropriate for exact calculations. 

For our  first remarks we do not even need an ergodic measure. 
Nevertheless, the following illustration might be helpful. The lines x = s(q) 
and y =s(q)  divide the square I x  I into two squares and two rectangles. 
The numbers p(00), p(01), p(10), and p(11 ) denote the relative frequency 
of points (xk,  Xk+l) in these four pieces, for a "typical orbit" xk =fk(xo) .  
A similar illustration, with 2" pieces, holds for n-words of the symbolic 
sequence. 
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A S t a n d a r d  F o r m  fo r  r 2. Let q be given. Clearly, q = p ( 0 ) =  
p(OO)+p(O1)=p(OO)+p(lO). Thus, if we know p(00), we can determine 
p(01) =p(10) and p( l l ) .  In other words, for fixed q we can consider He(q) 
and r2(q) as functions of one parameter p(00). (For the order n = 3 we get 
three free parameters.) 

If p(00)=0,  which can happen only for q~< 1/2, we get H2(q)= 
2cp(q)+~0(1-2q)  with ~o(p)=-p ldp ,  ~p(0)=~o(1)=l .  Similarly, 
H2(q) = 2~0(1-q)+ ~0(2q-1) for p ( l l ) = 0 ,  which is possible for q I> 1/2. 
These two expressions for H2 together define a function r~(q), 0 < q < 1, 
which is common to all time series of unimodal maps in the period-two 
window--from the first bifurcation up to the band-merging point (cf. Figs. 
2a-2c and 5a). Namely, if the values of the time series alternate between a 
"lower band" and an "upper band," then for q < 1/2 our threshold will be 
in the lower band, and 00 cannot appear in the symbol sequence. For 
q > 1/2 we are in the upper band, and 11 is impossible. In Section 3 we 
proved already that r2(1/2)= 1. 

The term "standard form of r2" is justified by the property that for all 
maps of the quadratic family with 3.5 ~< a < 4, there is ql > 0 and q2 < 1 
such that r2(q) = r~(q) for 0 < q < ql and q2 < q < 1 (cf. Figs. 2-5). To 
prove the second assertion (which is true also for a = 4, with qe = 2/3), we 
note that the nonzero fixed point x* of the mapping f must represent a 

b' 

0 1 
q 

Fig. 2. Entropy profiles r 2 to rio of the quadratic map for a band-merging scenario. 
(a) a =  3.569945 (near the Feigenbaum point), (b) a =  3.579 (chaotic four-band attractor), 
(c) a = 3.675 (chaotic two-band attractor), (d) a = 3.68 (chaotic one-band attractor). 
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Fig. 3. 

r.(q) 

a) b) 

c) 
i d) 

q 

Ent ropy  profiles r 2 to r~0 of the quadrat ic  m a p  near  the period-three-window. 
(a) a = 3.82, (b)  a = 3.8274, (c) a = 3.8282, (d) a = 3.8284. 

quantile q2 < 1 since for points x between 0 and x* we find a k ~> 1 with 
f k (x )>x* .  It is then obvious that p ( l l ) = 0  for q>q2. For  the first 
assertion, let x_  denote the (essential) infimum of a typical orbit of f .  
If a < 4, then x_  r 0, so f ( x  ) > x_ and the quantile q~ corresponding to 
f ( x_  ) is larger than zero. For  q < ql we have p(00) = 0. 

The universality of r* also holds for multimodal maPs f which do not 
"start or end with a fixed point." (For n > 2 we find a universal r* if we 
exclude maps which start or end with a periodic point of period smaller 

Fig. 4. 

r.(q) 

a) 

1 
q 

b) 

Ent ropy  profiles for the quadrat ic  map  at a = 4 (fully developed chaos), (a) Analyti- 
cal result for r 2 and r 3, (b) numerical  result for r~ to rio. 
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Fig. 5. Entropy profiles of 491 quadratic mapsf(x)=ax(1 - x ) ,  3.5~<a~<3.99. (a) r 2, (b) r 3. 

than n.) For continuous time series, however, as shown in Fig. i, these 
border effects are negligible since the minimum and maximum are almost 
fixed points. 

Profiles of Periodic Windows.  Generalizing our argument on 
r~', we shall now see that within each window of period p of a family of 
one-dimensional maps, all entropy profiles of order n<~p remain 
unchanged! This is illustrated in Fig. 5. 

A window of period p in the quadratic family is the set of all mappings 
between a tangent bifurcation which gives birth to an attractive orbit of 
period p, up to the corresponding band-merging point where p bands unify. 



978 Bandt and Pompe 

For our purpose, we can define a period-p window in an arbitrary 
parametric family of one-dimensional maps by a weaker property. We 
require that the functions f of the window are characterized by a cyclic per- 
mutation (m0= 1, ml ..... mp_ l )  as follows. There are p pairwise disjoint 
subintervals (or "bands") 11 ..... Ip o f / ,  written in natural order with 11 on 
the left, such that f e ( x )  ~ 1,, k for x ~ I1 and 0 ~< k <p ,  and f P ( x )  ~ 11 again. 
Now if ( j -  1 )/p < q < j/p, the threshold belongs to band lj, and we define 
the word u = ioi 1 . . .  ip_ 1 i 0 ' ' "  in- z with i k = 0 if me < j, with ie = 1 if me > j, 
and ie=  * for m e = j .  It is not difficult to see that the possible words w of 
length n for the symbol sequence are just the subwords of u of length n. If 
w does not contain a , ,  then p(w)  = 1/p, since a whole band is concerned. 
If w contains , ,  then we consider the words w ~ and w 1 defined at the end 
of Section 2, and distribute the mass l ip to p(w ~ and p(w  1) according to 
the position of q between ( j -  1)/p and j/p. In this way the profiles r , (q)  
with n ~<p are correctly determined, using only the information contained 
in the cyclic permutation. It does not  matter whether f has an attractive 
orbit of period p, 2p, 4p,..., or a continuous p-band attractor. 

For  the case q = k / p  where we have no , ,  we obtain rp(q)= 1 [see 
the discussion of (6)]. Moreover, rn(q)= 1 for n < p  if the sequence 
ioil . . . ip_ x io . . .  ip_ l i o""  is periodic with period n. 

F e i g e n b a u m  Po in t s .  A Feigenbaum point in a parametric family 
of maps is a parameter value which belongs to a decreasing sequence of 
windows. The corresponding sequence of periods tends to ~ .  So, by the 
results of the preceding paragraph, there is a dense set of rationals q for 
which r , ( q ) =  1 for sufficiently large n, and in the limit r ~ ( q ) -  1 for each 
q. This agrees with the well-known fact that the action o f f  on Feigenbaum 
attractors has topological entropy h = 0. (19) For the "classical" Feigenbaum 
point of type 2 ~ the situation is illustrated in Fig. 2a. 

�9 M a p s  w i t h  Ergodic Invar ian t  Measure .  Let  us now assume 

that there is a probability measure # on I which is invariant with respect 
t o f  [i.e., # ( B ) = l t ( f - l ( B ) )  for all Borel sets B c 1 ]  and ergodic [a set A 
with A = f - l ( A )  has p-measure 0 or 1 ]. The ergodic theorem says that for 
kt-almost all initial points x0, the measures #N which assign mass 1 / ( N -  1) 
to each of the points fg(xo) ,  k = 0 ,  1 ..... N - 1 ,  converge weakly to /~ for 
N ~ or. Thus in this case, one can use/z to determine H ,  and r,  directly, 
instead of evaluating trajectories. 

To determine quantiles, one uses the distribution function F ( t ) =  
/~({xEx< t}) of the probability measure. F maps I onto the unit interval 
[0, 1], and there is a mapping j7 from [0, 1] into itself with F . f = f . F  
which has the uniform distribution, the usual Lebesgue measure 2 on 
[0, 1 ], as an ergodic invariant probability measure. For  any q we can now 
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determine p(00) = 2({x[x < q, jT(x) < q}), and similarly for each word of 
length n. 

The Tent Map. We demonstrate the method for the tent map, 
which has 2 as ergodic invariant measure. The tent map g(x)= 2x for 
x < l / 2 ,  g ( x ) = 2 ( 1 - x )  for x>~l/2, is conjugate to f ( x ) = 4 x ( 1 - x ) J  4"7) 
(Actually, the above method applied to f yields jT=g.) It is interesting to 
note that from the viewpoint of linear time series analysis, these functions 
provide a model of white noise: the time series generated by both functions 
are known to be 6-correlated for almost all starting points in [0, 1 ]. In fact 
the values of r ,  were rather small in this case (Fig. 4). Nevertheless, 
nonlinear dependences in the data were sufficient to keep the entropy 
profiles well away from zero, especially for small q. 

r z and  r 3 for  the T e n t  Map .  We determine p(00) as the sum 
of the lengths of intervals on which x < q, g(x) < q. Now g(x) > q if 
and only if q/2 < x < 1 - q/2. For q < 1 - q/2 this implies p(00) =p(01) = 
p(lO)=q/2. Consequently, Hz=3~o(q/2)+~p(1-3q/2) for q<2/3.  For  
q > 2 / 3  we obtain p ( l l ) = 0 ,  p ( O 1 ) = l - q = p ( l O ) ,  which leads to 
H2(q) = 2~0(1 - q) + ~0(2q - 1 ). Note the coincidence with the result for/-/2 
above. 

For H3(q) we get 4~o(q/4) + 2~0(q/2) + ~o(1 - 2q) if q ~< 2/5, 4~o(q/4) + 
3~o(1/2 - 3q/4 ) + ~o( 5q/4 - 1 / 2  ) for 2/5 <<. q <~ 2/3, 2~o(q/4 ) + ~o(1- 5q/4 ) + 
~ o ( 1 - q ) + ~ ( 7 q / 4 - 1 )  for 2/3~<q~<4/5, and 3~p(1-q)+~p(3q-2)  for 
q t> 4/5. 

The corresponding profiles r z, r 3 are shown in Fig. 4a. Note that 
l imq~orE(q)=limq_or3(q)= 1/2--the only case of a unimodal map for 
which this limit is nonzero. Let us now discuss the peaks of r2 and r3. 

Markov Partitions. For q=l /2 ,  the sequence {ik} consists of 
statistically independent symbols if the starting point xl is chosen with 
respect to Lebesgue measure (i, depends on the nth digit in the binary 
representation of xl). Thus, r,(1/2) = 0 for n >/2. 

Next, consider q = 2/3. With Io = [0, 2/3 ] and I1 = [2/3, 1 ], we have 
g(I1) = Io. In terms of conditional probabilities, p(wn = O I Wk,..., W,_ x) = 1 
whenever w,_ 1= 1, for all k < n and all possible values of Wk,..., W,_2. 
Moreover, g maps the left half of I0 onto Io and the right half 
twice onto I1. Consequently, p(wn=O]w,_l  = 0 ) =  1/2. We show that 
p(w,  = 01Wk ..... W,_ 2, W,_ 1 = 0) = 1/2 for any k < n and any values of 
wk,..., w,_2. The set of all xk which generate the symbols wk,..., w,_2, 0 
consists of several intervals which are mapped by gn-1-k onto Io. We can 
choose the intervals so that g " - 1 - k  is a linear function on each interval. 



980 Bandt  and Pompe 

Then g" -k  maps exactly one half of each of these intervals onto I o. This 
proves that we have an ordinary Markov chain. Thus 

2 r.(3) = r2(~) = (ld 3 - 4)/(ld 3 - ~) ,~ 0.274 for n t> 3 

as seen in Fig. 4b. 
For  q=2/5, the partition Ioo = [0, 1/5], lol = [1/5, 2/5], 111 = [2/5, 4/5], 

and Ilo = [4/5, 1 ] induces a second-order Markov chain with p(0101) = 0, 
p(OlOO)=p(O[lO)=p(Olll)=l/2. The argument is the same as above: 
each of the intervals, except 101, divides into two halves when we consider 
the next letter. We have 

r,(~) = r3(~) ~ 0.176 for n > 3  

For  q = 4/5 the dynamics seems even more deterministic: I1 =/10 = 
I loo= [4/5,1] and Im=[2/5,3/5], and the remaining two intervals 
constitute I0o. This is not a Markov partition, however, since the image 
of Ioo does not evenly cover the partition sets. In fact, r3(4/5)~0.237, 
r4(4/5 ) ,~ 0.246, and r5(4/5) ~ 0.249. 

Problems. At this point, we have to mention the intricacies con- 
nected with the fact that a mapping, even a quadratic one, need not generate 
a stationary process. It was Milnor who asked whether for quadratic maps 
f without attracting periodic orbits, the time average of the orbit {xk} con- 
verges weakly to a fixed continuous f- invariant  distribution for Lebesgue- 
almost-all choices of the initial point Xo (ref. 16; cf. ref. 12). The physicist's 
obvious answer is "yes." A proof was given whenfe i the r  has a Feigenbaum 
attractor (4'19) or an absolutely continuous invariant measure, (3) which 
covers a lot of parameter values a, including a = 4. Recently, however, 
Hofbauer and Keller (131 have found other values of a where either weak 
convergence does not take place, or the limit is a discrete measure. Strictly 
speaking, this implies that the famous bifurcation diagram is not properly 
defined ! 

This raises the question whether the entropy profiles, estimated by 
taking limits from an orbit fk(xo), are the same for Lebesgue-almost-all 
choices of Xo. The answer is positive when an attracting measure in the 
sense of Milnor exists, but also in the presence of attractive periodic orbits. 
Note that not all Xo can be taken. 

We think that the connection between statistical and topological 
features in dynamics provides new and challenging problems. We confine 
ourselves to the topic of this paper: which functions r2(q) of quadratic 
maps are identical, outside periodic windows? Which absolutely con- 
t inuous invariant measures of quadratic maps have the property that the 
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critical point corresponds to q =  1/2? (We know only a = 4 . )  In periodic 
windows, the q of the critical point may be arbitrarily near to 1, but is 
there a lower bound ? 

5. S I M U L A T I O N  RESULTS FOR U N I M O D A L  M A P S  

The "Symmet ry -Break ing  Scenar io"  of  Fig. 5. All entropy 
profiles of quadratic mappings before the band-merging point are sym- 
metric, with a peak at q = 1/2 reaching to 1 (Figs. 2a-2c). Beyond that 
point, symmetry is broken, but only in the central part, which increases 
with a. Near 0 and 1, symmetry is preserved for a < 4, as we proved (Figs. 
2d, 3, and 4). The main peak is clearly seen, except for parameters near a 
periodic window. It wanders from 1/2 in Fig. 2 to 2/3 in Fig. 4. 

Beyond the band-merging point (Fig. 3d), the function r2 decreases 
with increasing a, but only in the central part, where  it becomes 
asymmetric. Note that the decrease of rz( q, a) for fixed q is interrupted by 
periodic windows. The period-three window, where r2 remains unchanged, 
is clearly seen in the middle of Fig. 5a, and the little shadow in the 
foreground indicates the period-four window at a ~ 3.96. It is curious to 
contrast the successive symmetry breaking in r2 with the position of the 
critical point, r2 is symmetric when the critical point is far from the median 
(1/2-quantile) of the distribution of the xk, and rE becomes completely 
asymmetric at a = 4, where the critical point coincides with the median. 

Intermittency. An interesting scenario, typical for intermittency, is 
shown in Fig. 3. Just below ac = 1 + ~ where a tangent bifurcation gives 
rise to the period-three window, the dynamics o f f  can be characterized as 
a long-lasting rather periodic change between three "bands" [located at the 
"channels" between the graph o f f  3 and g(x)=x],  interrupted by short 
chaotic bursts. ~7) In the "quasiperiodic" parts, f 3  maps each "band" into 
itself in a monotonic manner. When a comes near to ac, the chaotic parts 
become negligible for the estimation of p(w), and the action o f f  3 is the 
same as in the example of Section 3, with a small e. Hence r,(q) tends to 
1 when a approaches ac, for every n > 3 and 0 < q < 1. For q < 1/3 and 
q > 2/3 convergence is three times faster as in Section 3 (indicated by the 
coincidence of r,), while the middle part carries the effects of chaotic bursts. 

Numerical Methods  and Accuracy.  All simulations were made 
on a personal computer. Applying a quicksort algorithm to {xk}, we deter- 
mine the s(q). The p(w) can be calculated by integer arithmetic. As a rule, 
one needs at least ten times more data than words w for which we estimate 
frequencies. For quadratic maps we took N = 30,000. When the order n of 
profiles does not exceed five, there will be quite accurate results with 1000 



982 Bandt and Pompe 

values. Note that the sampling error is maximal for values of q near to zero 
or one, due to the bad statistics when one symbol is rare. Compare Figs. 
4a and 4b at q = 0 (in this particular case, another initial value yields better 
coincidence). On the other hand, the method is quite stable with respect to 
outliers (even wrong values) and noise. 

6. CONCLUSION 

We have introduced new functions describing statistical dependences 
in a time series. Entropy profiles are defined by a certain level-crossing 
statistics combined with an appropriate standardization of thresholds. 
Their properties were discussed both in general and through the example 
of quadratic (logistic) maps. Entropy profiles are invariant with respect to 
arbitrary monotonic distortion of the domain, which makes them 
applicable to time series of ordinal data. The method applies well to a large 
class of speech signals (2) and some experiments to study attractors have 
been very promising. 
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